skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Platter, Lucas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We use Bayesian statistics to infer the breakdown scale of pionless effective field theory in its standard power counting and with renormalization of observables carried out using the power-divergence subtraction scheme and cutoff regularization. We condition our inference on predictions of the total neutron-proton scattering cross section up next-to-next-to leading order. We quantify a median breakdown scale of approximately 1.4 mpi . The 68% degree of belief interval is [0.96, 1.69]mpi . This result confirms the canonical expectation that the pion mass is a relevant scale in low-energy nuclear physics. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  2. Abstract We calculate the S -factor for proton–proton fusion using chiral effective field theory interactions and currents. By performing order-by-order calculations with a variety of chiral interactions that are regularized and calibrated in different ways, we assess the uncertainty in the S -factor from the truncation of the effective field theory expansion and from the sensitivity of the S -factor to the short-distance axial current determined from three- and four-nucleon observables. We find that S (0) = (4.100 ± 0.024(syst) ± 0.013(stat) ± 0.008( g A )) × 10 −23 MeV fm 2 , where the three uncertainties arise, respectively, from the truncation of the effective field theory expansion, use of the two-nucleon axial current fit to few-nucleon observables and variation of the axial coupling constant within the recommended range. The increased value of S (0) compared to previous calculations is mainly driven by an increase in the recommended value for the axial coupling constant and is in agreement with a recent analysis based on pionless effective field theory. 
    more » « less